Limb bud colonization by somite-derived angioblasts is a crucial step for myoblast emigration.
نویسندگان
چکیده
We have combined the use of mouse genetic strains and the mouse-into-chicken chimera system to determine precisely the sequence of forelimb colonization by presomitic mesoderm (PSM)-derived myoblasts and angioblasts, and the possible role of this latter cell type in myoblast guidance. By creating a new Flk1/Pax3 double reporter mouse line, we have established the precise timetable for angioblast and myoblast delamination/migration from the somite to the limb bud. This timetable was conserved when mouse PSM was grafted into a chicken host, which further validates the experimental model. The use of Pax3(GFP/GFP) knockout mice showed that establishment of vascular endothelial and smooth muscle cells (SMCs) is not compromised by the absence of Pax3. Of note, Pax3(GFP/GFP) knockout mouse PSM-derived cells can contribute to aortic, but not to limb, SMCs that are derived from the somatopleure. Finally, using the Flk1(lacZ)(/)(lacZ) knockout mouse, we show that, in the absence of angioblast and vascular network formation, myoblasts are prevented from migrating into the limb. Taken together, our study establishes for the first time the time schedule for endothelial and skeletal muscle cell colonization in the mouse limb bud and establishes the absolute requirement of endothelial cells for myoblast delamination and migration to the limb. It also reveals that cells delaminating from the somites display marked differentiation traits, suggesting that if a common progenitor exists, its lifespan is extremely short and restricted to the somite.
منابع مشابه
Loss of fibroblast growth factor receptors is necessary for terminal differentiation of embryonic limb muscle.
Early in embryogenesis, precursors of the limb musculature are generated in the somite, migrate to the limb buds and undergo terminal differentiation. Although myogenic differentiation in culture is affected by several growth factors including fibroblast growth factor (FGF), it remains uncertain whether migration and differentiation of myogenic cells in vivo are directly regulated by such growt...
متن کاملThe segmented mesoderm in vertebrates
The patterning and differentiation of cells in the somitic mesoderm is an important step in the development of axial structures that include the vertebral column and skeletal muscle. Development of the somitic mesoderm is characterized by the progressive segmentation of mesoderm tissue directly flanking the neural tube into two bilateral rows of somites. Somites when they first appear consist o...
متن کاملLocal signals in the chick limb bud can override myoblast lineage commitment: induction of slow myosin heavy chain in fast myoblasts
Patterning of fast and slow muscle fibres in limbs is regulated by signals from non-muscle cells. Myoblast lineage has, however, also been implicated in fibre type patterning. Here we test a founder cell hypothesis for the role of myoblast lineage, by implanting characterized fast and slow mouse myoblast clones into chick limb buds. In culture, late foetal mouse myoblast clones are committed to...
متن کاملInduction and prepatterning of the zebrafish pectoral fin bud requires axial retinoic acid signaling.
Vertebrate forelimbs arise as bilateral appendages from the lateral plate mesoderm (LPM). Mutants in aldh1a2 (raldh2), an embryonically expressed gene encoding a retinoic acid (RA)-synthesizing enzyme, have been used to show that limb development and patterning of the limb bud are crucially dependent on RA signaling. However, the timing and cellular origin of RA signaling in these processes hav...
متن کاملMouse Twist is required for fibroblast growth factor-mediated epithelial–mesenchymal signalling and cell survival during limb morphogenesis
Mouse Twist is essential for cranial neural tube, limb and somite development. [Genes Dev. 9 (1995) 686]. To identify the molecular defects disrupting limb morphogenesis, we have analysed expression of mesenchymal transcription factors involved in patterning and the cell-cell signalling cascades controlling limb bud development. These studies establish that Twist is essential for maintenance an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 139 2 شماره
صفحات -
تاریخ انتشار 2012